Polymorphisms in pilin glycosylation Locus of Neisseria meningitidis expressing class II pili.

نویسندگان

  • C M Kahler
  • L E Martin
  • Y L Tzeng
  • Y K Miller
  • K Sharkey
  • D S Stephens
  • J K Davies
چکیده

We have located a locus, pgl, in Neisseria meningitidis strain NMB required for the glycosylation of class II pili. Between five and eight open reading frames (ORFs) (pglF, pglB, pglC, pglB2, orf2, orf3, orf8, and avtA) were present in the pgl clusters of different meningococcal isolates. The Class I pilus-expressing strains Neisseria gonorrhoeae MS11 and N. meningitidis MC58 each contain a pgl cluster in which orf2 and orf3 have been deleted. Strain NMB and other meningococcal isolates which express class II type IV pili contained pgl clusters in which pglB had been replaced by pglB2 and an additional novel ORF, orf8, had been inserted between pglB2 and pglC. Insertional inactivation of the eight ORFs of the pgl cluster of strain NMB showed that pglF, pglB2, pglC, and pglD, but not orf2, orf3, orf8, and avtA, were necessary for pilin glycosylation. Pilin glycosylation was not essential for resistance to normal human serum, as pglF and pglD mutants retained wild-type levels of serum resistance. Although pglB2 and pglC mutants were significantly sensitive to normal human serum under the experimental conditions used, subsequent examination of the encapsulation phenotypes revealed that pglB2 and pglC mutants expressed almost 50% less capsule than wild-type NMB. A mutation in orf3, which did not affect pilin glycosylation, also resulted in a 10% reduction in capsule expression and a moderately serum sensitive phenotype. On the basis of these results we suggest that pilin glycosylation may proceed via a lipid-linked oligosaccharide intermediate and that blockages in this pathway may interfere with capsular transport or assembly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a class II pilin expression locus from Neisseria meningitidis: evidence for increased diversity among pilin genes in pathogenic Neisseria species.

Strains of Neisseria meningitidis elaborate one of two classes of pili. Meningococcal class I pili have many features in common with pili produced by N. gonorrhoeae, including the ability to bind monoclonal antibody SM1 and a common gene and protein structure consisting of conserved, semivariable, and hypervariable regions. Class II pili are SM1 nonreactive and display smaller subunit molecular...

متن کامل

Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation

The ability of pathogens to cause disease depends on their aptitude to escape the immune system. Type IV pili are extracellular filamentous virulence factors composed of pilin monomers and frequently expressed by bacterial pathogens. As such they are major targets for the host immune system. In the human pathogen Neisseria meningitidis, strains expressing class I pilins contain a genetic recomb...

متن کامل

The Use of High-Throughput DNA Sequencing in the Investigation of Antigenic Variation: Application to Neisseria Species

Antigenic variation occurs in a broad range of species. This process resembles gene conversion in that variant DNA is unidirectionally transferred from partial gene copies (or silent loci) into an expression locus. Previous studies of antigenic variation have involved the amplification and sequencing of individual genes from hundreds of colonies. Using the pilE gene from Neisseria gonorrhoeae w...

متن کامل

Characterization of a Novel Antisense RNA in the Major Pilin Locus of Neisseria meningitidis Influencing Antigenic Variation

UNLABELLED Expression of type four pili (Tfp) is essential for virulence in Neisseria meningitidis. Pili mediate adhesion, bacterial aggregation, and DNA uptake. In N. meningitidis, the major pilin subunit is encoded by the pilE gene. In some strains, PilE is subject to phase and antigenic variation, which can alter Tfp properties and together offer a possible mechanism of immune escape. Pilin ...

متن کامل

Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure

Neisseria gonorrhoeae expresses an O-linked protein glycosylation pathway that targets PilE, the major pilin subunit protein of the Type IV pilus colonization factor. Efforts to define glycan structure and thus the functions of pilin glycosylation (Pgl) components at the molecular level have been hindered by the lack of sensitive methodologies. Here, we utilized a 'top-down' mass spectrometric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 69 6  شماره 

صفحات  -

تاریخ انتشار 2001